Angebote zu "Statt" (8 Treffer)

Kategorien

Shops

Parität statt Klassenkampf?
77,95 € *
ggf. zzgl. Versand

Parität statt Klassenkampf? ab 77.95 € als Taschenbuch: Zur Organisation des Arbeitsmarktes und Domestizierung des Arbeitskampfes in Deutschland und England 1900-1918. Aus dem Bereich: Bücher, Politik & Gesellschaft,

Anbieter: hugendubel
Stand: 07.07.2020
Zum Angebot
Parität statt Klassenkampf?
77,95 € *
ggf. zzgl. Versand

Parität statt Klassenkampf? ab 77.95 EURO Zur Organisation des Arbeitsmarktes und Domestizierung des Arbeitskampfes in Deutschland und England 1900-1918

Anbieter: ebook.de
Stand: 07.07.2020
Zum Angebot
Parität statt Klassenkampf?
77,95 € *
ggf. zzgl. Versand

Die Auseinandersetzung zwischen Staat, bürgerlichen Sozialreformen, Gewerkschaften und Arbeitgeberverbänden um eine Kontrolle des Arbeitsmarktes und Eindämmung des industriellen Konfliktes bestimmte massgeblich die sozialpolitische Entwicklung Deutschlands und Grossbritanniens vor und während des 1. Weltkriegs. Unter dem Aspekt der "industrial relations" wird nach den sozioökonomischen Bedingungen und ideologischen Zielvorstellungen von paritätischen Regelungen gefragt und die Rolle des Interventionsstaates analysiert. Dabei wird das Spannungsverhältnis von technischer und organisatorischer Modernisierung einerseits und gesellschaftspolitischem Fortschritt andererseits deutlich.

Anbieter: Dodax
Stand: 07.07.2020
Zum Angebot
Bewertung von Optionen bei stochastischer Volat...
67,90 CHF *
ggf. zzgl. Versand

Inhaltsangabe:Einleitung: Die Geschichte der Bewertung von Optionen auf Aktien, deren Kurs einer geometrischen Brown'schen Bewegung folgt, reicht bis in die 50-er Jahre zurück. Alle zwischen 1950 und 1970 entwickelten Theorien enthalten ad hoc-Annahmen und sind insofern unbefriedigend. 1973 leiten Black und Scholes einen eindeutigen rationalen Preis für eine europäische Kaufoption her, der unabhängig von den individuellen Risikopräferenzen ist. Sie gehen dabei von folgenden Annahmen aus: 1. Es gibt keine Beschränkungen bezüglich Leerverkäufen von Wertpapieren. 2. Es gibt keine Transaktionskosten und Steuern. 3. Alle Wertpapiere stehen in beliebig teilbaren Einheiten zur Verfügung. 4. Es gibt keine risikolosen Arbitragemöglichkeiten. 5. Der Handel mit Wertpapieren findet kontinuierlich, d. h. in jedem Zeitpunkt statt. 6. Die Wertpapiere schütten keine Dividenden oder sonstigen Einkommen aus. 7. Der Zinssatz r ist konstant. Bei stochastischer Volatilität ist der Markt im allgemeinen unvollständig. Dies ist ein wichtiger Unterschied zum Black-Scholes Modell mit seinem vollständigen Markt. Ein Markt heisst vollständig, wenn jede zustandsabhängige Auszahlung (und damit auch jede Option) erreichbar ist. Eine zustandsabhängige Auszahlung ist erreichbar, wenn sie durch eine selbstfinanzierende Portfoliostrategie erzeugt werden kann. Wie oben dargelegt wurde, steht und fällt die Black-Scholes Formel (1.2) für den Preis einer europäischen Kaufoption mit deren Erreichbarkeit. Gang der Untersuchung: Zur Bewertung von Optionen bei stochastischer Volatilität muss erst das konzeptionelle Problem der Optionsbewertung auf unvollständigen Märkten gelöst werden. Dies wird in Kapitel 2 versucht. Sobald dieses konzeptionelle Problem gelöst ist, reduziert sich das Optionsbewertungsproblem auf ein Rechenproblem. In Kapitel 3 werden für verschiedene Modelle mit stochastischer Volatilität Lösungen dieses Rechenproblems dargestellt. Hierbei werden nur Modelle behandelt, die einen zusätzlichen stochastischen Prozess für die Volatilität enthalten. Andere Modelle mit stochastischer Volatilität bleiben unberücksichtigt, da diese meistens unter relativ schwachen Annahmen zu vollständigen Märkten führen. Solche Modelle sind im Hinblick auf das konzeptionelle Problem weniger interessant. In dieser Arbeit wird hauptsächlich die Bewertung europäischer Kaufoptionen auf dividendengeschützte Aktien behandelt. Damit ist aber über die Put-Call-Parität und einen Satz von Merton [...]

Anbieter: Orell Fuessli CH
Stand: 07.07.2020
Zum Angebot
Bewertung von Optionen bei stochastischer Volat...
45,90 CHF *
ggf. zzgl. Versand

Inhaltsangabe:Einleitung: Die Geschichte der Bewertung von Optionen auf Aktien, deren Kurs einer geometrischen Brown'schen Bewegung folgt, reicht bis in die 50-er Jahre zurück. Alle zwischen 1950 und 1970 entwickelten Theorien enthalten ad hoc-Annahmen und sind insofern unbefriedigend. 1973 leiten Black und Scholes einen eindeutigen rationalen Preis für eine europäische Kaufoption her, der unabhängig von den individuellen Risikopräferenzen ist. Sie gehen dabei von folgenden Annahmen aus: 1. Es gibt keine Beschränkungen bezüglich Leerverkäufen von Wertpapieren. 2. Es gibt keine Transaktionskosten und Steuern. 3. Alle Wertpapiere stehen in beliebig teilbaren Einheiten zur Verfügung. 4. Es gibt keine risikolosen Arbitragemöglichkeiten. 5. Der Handel mit Wertpapieren findet kontinuierlich, d. h. in jedem Zeitpunkt statt. 6. Die Wertpapiere schütten keine Dividenden oder sonstigen Einkommen aus. 7. Der Zinssatz r ist konstant. Bei stochastischer Volatilität ist der Markt im allgemeinen unvollständig. Dies ist ein wichtiger Unterschied zum Black-Scholes Modell mit seinem vollständigen Markt. Ein Markt heisst vollständig, wenn jede zustandsabhängige Auszahlung (und damit auch jede Option) erreichbar ist. Eine zustandsabhängige Auszahlung ist erreichbar, wenn sie durch eine selbstfinanzierende Portfoliostrategie erzeugt werden kann. Wie oben dargelegt wurde, steht und fällt die Black-Scholes Formel (1.2) für den Preis einer europäischen Kaufoption mit deren Erreichbarkeit. Gang der Untersuchung: Zur Bewertung von Optionen bei stochastischer Volatilität muss erst das konzeptionelle Problem der Optionsbewertung auf unvollständigen Märkten gelöst werden. Dies wird in Kapitel 2 versucht. Sobald dieses konzeptionelle Problem gelöst ist, reduziert sich das Optionsbewertungsproblem auf ein Rechenproblem. In Kapitel 3 werden für verschiedene Modelle mit stochastischer Volatilität Lösungen dieses Rechenproblems dargestellt. Hierbei werden nur Modelle behandelt, die einen zusätzlichen stochastischen Prozess für die Volatilität enthalten. Andere Modelle mit stochastischer Volatilität bleiben unberücksichtigt, da diese meistens unter relativ schwachen Annahmen zu vollständigen Märkten führen. Solche Modelle sind im Hinblick auf das konzeptionelle Problem weniger interessant. In dieser Arbeit wird hauptsächlich die Bewertung europäischer Kaufoptionen auf dividendengeschützte Aktien behandelt. Damit ist aber über die Put-Call-Parität und einen Satz von Merton [...]

Anbieter: Orell Fuessli CH
Stand: 07.07.2020
Zum Angebot
Bewertung von Optionen bei stochastischer Volat...
39,10 € *
ggf. zzgl. Versand

Inhaltsangabe:Einleitung: Die Geschichte der Bewertung von Optionen auf Aktien, deren Kurs einer geometrischen Brown'schen Bewegung folgt, reicht bis in die 50-er Jahre zurück. Alle zwischen 1950 und 1970 entwickelten Theorien enthalten ad hoc-Annahmen und sind insofern unbefriedigend. 1973 leiten Black und Scholes einen eindeutigen rationalen Preis für eine europäische Kaufoption her, der unabhängig von den individuellen Risikopräferenzen ist. Sie gehen dabei von folgenden Annahmen aus: 1. Es gibt keine Beschränkungen bezüglich Leerverkäufen von Wertpapieren. 2. Es gibt keine Transaktionskosten und Steuern. 3. Alle Wertpapiere stehen in beliebig teilbaren Einheiten zur Verfügung. 4. Es gibt keine risikolosen Arbitragemöglichkeiten. 5. Der Handel mit Wertpapieren findet kontinuierlich, d. h. in jedem Zeitpunkt statt. 6. Die Wertpapiere schütten keine Dividenden oder sonstigen Einkommen aus. 7. Der Zinssatz r ist konstant. Bei stochastischer Volatilität ist der Markt im allgemeinen unvollständig. Dies ist ein wichtiger Unterschied zum Black-Scholes Modell mit seinem vollständigen Markt. Ein Markt heißt vollständig, wenn jede zustandsabhängige Auszahlung (und damit auch jede Option) erreichbar ist. Eine zustandsabhängige Auszahlung ist erreichbar, wenn sie durch eine selbstfinanzierende Portfoliostrategie erzeugt werden kann. Wie oben dargelegt wurde, steht und fällt die Black-Scholes Formel (1.2) für den Preis einer europäischen Kaufoption mit deren Erreichbarkeit. Gang der Untersuchung: Zur Bewertung von Optionen bei stochastischer Volatilität muß erst das konzeptionelle Problem der Optionsbewertung auf unvollständigen Märkten gelöst werden. Dies wird in Kapitel 2 versucht. Sobald dieses konzeptionelle Problem gelöst ist, reduziert sich das Optionsbewertungsproblem auf ein Rechenproblem. In Kapitel 3 werden für verschiedene Modelle mit stochastischer Volatilität Lösungen dieses Rechenproblems dargestellt. Hierbei werden nur Modelle behandelt, die einen zusätzlichen stochastischen Prozeß für die Volatilität enthalten. Andere Modelle mit stochastischer Volatilität bleiben unberücksichtigt, da diese meistens unter relativ schwachen Annahmen zu vollständigen Märkten führen. Solche Modelle sind im Hinblick auf das konzeptionelle Problem weniger interessant. In dieser Arbeit wird hauptsächlich die Bewertung europäischer Kaufoptionen auf dividendengeschützte Aktien behandelt. Damit ist aber über die Put-Call-Parität und einen Satz von Merton [...]

Anbieter: Thalia AT
Stand: 07.07.2020
Zum Angebot
Bewertung von Optionen bei stochastischer Volat...
38,00 € *
ggf. zzgl. Versand

Inhaltsangabe:Einleitung: Die Geschichte der Bewertung von Optionen auf Aktien, deren Kurs einer geometrischen Brown'schen Bewegung folgt, reicht bis in die 50-er Jahre zurück. Alle zwischen 1950 und 1970 entwickelten Theorien enthalten ad hoc-Annahmen und sind insofern unbefriedigend. 1973 leiten Black und Scholes einen eindeutigen rationalen Preis für eine europäische Kaufoption her, der unabhängig von den individuellen Risikopräferenzen ist. Sie gehen dabei von folgenden Annahmen aus: 1. Es gibt keine Beschränkungen bezüglich Leerverkäufen von Wertpapieren. 2. Es gibt keine Transaktionskosten und Steuern. 3. Alle Wertpapiere stehen in beliebig teilbaren Einheiten zur Verfügung. 4. Es gibt keine risikolosen Arbitragemöglichkeiten. 5. Der Handel mit Wertpapieren findet kontinuierlich, d. h. in jedem Zeitpunkt statt. 6. Die Wertpapiere schütten keine Dividenden oder sonstigen Einkommen aus. 7. Der Zinssatz r ist konstant. Bei stochastischer Volatilität ist der Markt im allgemeinen unvollständig. Dies ist ein wichtiger Unterschied zum Black-Scholes Modell mit seinem vollständigen Markt. Ein Markt heißt vollständig, wenn jede zustandsabhängige Auszahlung (und damit auch jede Option) erreichbar ist. Eine zustandsabhängige Auszahlung ist erreichbar, wenn sie durch eine selbstfinanzierende Portfoliostrategie erzeugt werden kann. Wie oben dargelegt wurde, steht und fällt die Black-Scholes Formel (1.2) für den Preis einer europäischen Kaufoption mit deren Erreichbarkeit. Gang der Untersuchung: Zur Bewertung von Optionen bei stochastischer Volatilität muß erst das konzeptionelle Problem der Optionsbewertung auf unvollständigen Märkten gelöst werden. Dies wird in Kapitel 2 versucht. Sobald dieses konzeptionelle Problem gelöst ist, reduziert sich das Optionsbewertungsproblem auf ein Rechenproblem. In Kapitel 3 werden für verschiedene Modelle mit stochastischer Volatilität Lösungen dieses Rechenproblems dargestellt. Hierbei werden nur Modelle behandelt, die einen zusätzlichen stochastischen Prozeß für die Volatilität enthalten. Andere Modelle mit stochastischer Volatilität bleiben unberücksichtigt, da diese meistens unter relativ schwachen Annahmen zu vollständigen Märkten führen. Solche Modelle sind im Hinblick auf das konzeptionelle Problem weniger interessant. In dieser Arbeit wird hauptsächlich die Bewertung europäischer Kaufoptionen auf dividendengeschützte Aktien behandelt. Damit ist aber über die Put-Call-Parität und einen Satz von Merton [...]

Anbieter: Thalia AT
Stand: 07.07.2020
Zum Angebot